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SIGNIFICANCE AND EXPLANATION

Spherical harmonics are used to solve many physical problems, especially

in potential theory. A generalization of zonal spherical harmonics was

introduced by L. J. Rogers in 1895. He obtained many properties of these

polynomials, including some that would not be found for the classical spherical

harmenics for another twenty-five years. However he was unaware that his

polynomials were orthogonal. The orthogonality relation is proved and
used to obtain further results for these polynomials. Another limiting case

gives a relatively recent result of Hylleraas that arose in his study of the

Yukawa potential.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A GENERALIZATION OF ULTRASPHERICAL POLYNOMIALS
Richard Askey and Mourad E.-H. Ismail

To the memory of Paul Turén, with respect and affection.

1. Introduction. Pejér [21] introduced the following class of polynomials. Let

(1.1) flz) = § a2"
n
n=0

be a function analytic in a neighborhood of the origin with an real. Form

v ®
(1.2) lee'® |2 = 7 P_(cos §)r" ,
n=0
so that
n
(1.3) P_(cos ) = £ aa  cos(n - 2k)8 .

k=0

Pn(x) is a polynomial of degree n, and is called a generalized Legendre polynomial
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since f(z) = (1 - z)- gives the Legendre polynomials. More generally,

f(z) = (1 - z)-x gives the ultraspherical polynomials Cg(x). The orthogonality rela-

tion for the ultraspherical polynomials when )\ > -% is

A A A
(1.4) J cacta -
= n m

x2 k-l/2dx

) =0, m#*n,

& 1
(ZX)nF(EJT(X + 50
n!(n + X)T(})

’ m=5 .

Fejér and Szego obtained a number of interesting facts about these generalized Legendre
polynomials, some of which are summarized in [40, Chapter VI]. Feldheim [23] and
Lancevickil (32) determined when the generalized Legendre polynomials are orthogonal

by showing that the polynomials must satisfy a specific recurrence relation. However
they did not obtain an explicit representation for the polynomials and they were

unable to find the weight function. We will find both the polynomials and the weight
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function. These polynomials are not new. They were studied extensively by Rogers in
the third of an important series of papers [36]. The only results from this series

of papers that are well known are two identities that Ramanujan rediscovered and are
now known as the Rogers-Ramanujan identities. However there are many other interesting

identities (some are reproved in [6]), and the polynomials in the third paper are

probably more interesting and important than any other results in Rogers' papers,
including the Rogers-Ramanujan identities. We will summarize some of the results Rogers
obtained for these polynomials and add a few new ones.

The key to obtaining explicit formulas is to use the g-binomial theorem and basic

hypergeometric series. The binomial theorem can be written as

o © (a)
(1.5) 1-x"2= 7 2"
e n!
where
(1.6) (a)n = Bin+ ay/I{@) = afa + 1} “*° @ +un ~1) -
The g-binomial theorem [5, Th. 2.1] is ’
© (a;q) (ax;q)
(1.7) —n " e |x|< 1, |ql = X 7
n=p (D (x:q) .
where
(1.8) @a_ =TT @a~ad™, lq <1,
n=0
and |
|
(a;q), n-1 |
(1.9) (Arg) e e e (o S a0 ) |
n n |
(aq ;q)

More general hypergeometric and basic hypergeometric series are given by

AR {al,...,ar‘ x] 3 E (al)n cua ‘at)n iﬁ
rs bl""’bs a0 (bl)n see (bs)n n!

o
al""’ar+1. g x] - z (al:q)n i (aﬂl;q)n <"

(1.11) ¥ [ ; .. g
r+l7r(bys..sby =0 (byid (b :q) (q:q)




i

TR S

i AR AT ST

R A

T s YT

To motivate the study of the polynomials implicitly found by Feldheim and

Lancevickil we remark that their generating function will turn out to be

(Bteie;q)r(Bre-la:q)w o =
(1.12) . - = Y P (cos 0)r" ,
i -i6 ¢ n
(are” ;q)_(are #q) .n=0

which is a very natural analogue of the classical generating function

A

(1.13) (=~ 2¢ o8 0% 2°) Ve ) Cﬁ(cos or” .

n=0

For 1 = 2r cos 0 + r2 = (1 -rele)(l - re-le), and the analogy between the binomial

theorem as given in (1.5) and the g-binomial theorem in (1.7) shows that the function

(Btele;q) /(arele;q) is a natural substitute for (1 - rele).x
o L

b R e AT




2. The orthogonal generalized Legendre polynomials. If a set of polynomials is

orthogonal and satisfies Pn(-x) = (—1)nPn(x), then it must satisfy the three term
recurrence relation

(2.1) 2bnxPn(x) = Pn+1(X) + XnPn-l(x), L RS Po(x) =1, P_l(x) =0 .

Feldheim [23] deteirmined bn and An for the generalized Legendre polynomials that

are orthogonal. His result is

b

]

b+(bl-b)imh—(rl—-—-—l—)—£ no= 0, Ko g {

n 1 0" sinh(n + 1)£ '

I

2 i sinh(n - 1)¢§ 2 2 sinh(n - 3)¢ !
A m R R B R et T Ny TR ete Tk e .

The coefficients in the original power series for f(z) satisfy

(2.2) b =a /a
n o n

~1
Setting q = exp(-2(), we rewrite these as

n-1

A 4 Q-9 7)
(2.3) b, =b + (b -b)q =
1 -~-g ) y
2 Gagt Ty e
(2.4) A =b?+ab b ~bigt—% L, g -p )32 A2 )
n ) | 1 1Sa01 s qn+1) i [o} - qn+1)

With these choices of bn and )n, formula (2.1) can be written as

n
ZX(bl(l S ) boq = (blq + b1 - bo)q ]Pn(x)

e 8 2 _ n-1 o
(1 q )Pn+1(X) + [(b1 + blq boq) q (bl + blq bo) ]Pn_l(x) =

Set b1 ¥ blq - boq = a and blq + b1 - bo = B. This gives

1 *_n>1

n n+ 2
(2:5) 2x[a - Bg ]Pn(x) = () -q )Pn+l(x) + o «Bq ]Pn-l(X) "

To find the polynomials Pn(x), multiply (2.5) by rn+1 and sum, recalling that

P_l(x) =0, and Po(x) * ). 3P

o
f(r,x) = § P (e,
n
n=0

the resulting equation is




An unlikely looking formula follows on equating the basic hypergeometric series

in (3.2) and (3.10). It can be written as

=B 2 n, 4 f ~n n 4 =i
g . a 2 X (a ;q) lq.qa,ax,ax
(3.17) ¢ pq B s ——— ¢ ; qeql -
2 1] ¥-=n -2 2 n, 2 4" 3] 2 1/2 2 1/2 2
q a a a (a ;q)n aq e @G : ™8
a/2 e = i . L < :
When a = g and the limit g > 1 is taken the resulting identity 1s
n 1
-n, a X (2a) ~Nie 0D F 20 2
2 n (X -~ x) l
(3.18) F PoX ] = ———— _F L e .
2 1 N e e J (a)n 21 S % 4x :

This is one of the iterated quadratic transformations. The first quadratic type
transformation for basic hypergeometric series seems to be that of Carlitz [17].
Another is given in (7], where the discrete g-ultraspherical polynomials are related
to some discrete g-Jacobi polynomials. Another will be given in [12].

An interesting inequality follows from (3.1),

(3.19) lcn(x;B|q)| < cnu;slq), L < @<L, Ll <g<i.

For |cos(n - 2k)6| <1 and (B;@), > 0, (gi@), >0 when -1<B <1, -1<gqc<l.

Unlike the classical case of Cﬁ(x), when

2 (2X)

(3.20) ¢y = —=,
n ni

it is impossible to find the value Cn(l;BIq) as a simple product. There are two

interesting points where the value can be given as a product. From (2.10)

; . 22 2 o e 2
(Bir;q) (-Bir;q) (=B i) (B :q )n o

= n _ n 5 "
L €, wiblare” s (ir;q)_(-ir;q) e

2 2
n=0 (= o 0 n=0 (q~iq")
i so
L 8%hah
(3.21) czn(o;slq) = (-1) e
F (q7:q")
n
| c2n+l(o;elq) =0 .
i a, b
Heine [28], see also [5, Cor. 2.4] found an analogue of Gauss' sum of 2F1 A |
e
It is
_10-
R —
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. ql (e,
a,b ] a'q) lb'q
(3.22) ¢ P = e, S <1, g <1
2y ab | (c ab
L J l;g' q] (ciq)
If the series terminates this is the correct value without the condition é% < 1.
23
Set 8770« in (2.2}, ‘This gives
2
B1/2 % 8-1/2 (8 ;q)n 4
(3.23) Cn———z——:slq=(——)—‘ ERS T g
q:4d n
-} £2 A :
When 1 < R < g this is interesting, for then
1/2 =142
: B + B 3 3,
lim cn[———«—~2 i glal =0 .
n-bm

This goes to zero fast enough so the distribution function has a point mass at

1/2 : 8—1/2 1/2

x = (B )/2 when 1 < B < q- , See [33]. By symmetry there is also one at

1/2 -1/2)/ 1/2.

x = =(8B + 2. These are the only point masses when 1 < R < q—

For convenience the first four of these polynomials are given next.

Co(x;8|q) =1
; o 2 81
¢, (x;B|q) ey
2
(3.24) C,(x;Bl@) = 40 -8 Q eg) o S sz)
Q- aill ~ q%) a-q

_2x(-R)(2+q+80-g) - 8%q01+29)
a-gdha-aqdh

_80-8)(1-89) (1-8¢") 3
a-aa-dra-q)

Cs(x;B]q)

From this point on the formulas become more complicated.
Another useful expression for Cn(cas B;BIq) can be obtained by applying the

g-analogue of the Ptaff-Kummer transformation to (3.2). This transformation is
n
)
€ n_2
ot ; =-xb
a, b (ax;q)m [b QJn(a q)n( xb) q
(3.25) ¥ P QX
>

(x:q) | nZO (ciq) (q:q) (ax;iq)

See Andrews [4] for a proof of this formula.

The resulting formula is




(B;q)n

(3.26) Cn(cos O;qu) = TE;ET; e

n

k

i () i TR

n (g n;q)k(q B 2;q)kq (-qe 216)

= e S | |
k=0 (q1 g 1;q)k(q1 g 1e L ;q)k(q;q)k

1-n

in6 -1 -2i6 1- l
n (8 le 2i q1 n;q) . I |

|

{

|

2 \

|

Now sum this series in the opposite direction, i.e. replace k by n - k, and simplify 1

to obtain |
[ 4
(Bz:q)ne-lne q-nl B, 83216 | |
(3.27) G, laos GHBlg) * i gl 2 i gy af -
(q;q)nB g .0

From this it is easy to obtain the generating function

n 210 i

® C (cos 0:8la) () 5a B. Be il 1
=g d (Bel more i) SRy i q, -re .
n=0 (B ;q)n 82

(3.28)

Gsan e o
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4. The orthogonality relation. The orthogonality relation for the g-Wilson polynormials

defined in (3.3) is

LR r 0 TT a- 202° - 1ig® + 5

(4.1) =2 2
- h(x,a)h(x,b)h(x,c)h(x,d) Bt

( 0 m # n

A=l
2wa2%bc.q)n(bd.q)n(cd,q)n(q.q)n(l - abcdq )

2n-1_
= 1 (ab;q)n(ac,q)n(ad.q)n(abcd,q)n(l ~ abcdg ) m=n

(abcd;q)°°

(ab:q)w(ac;q)m(ad;q)m(bc:q)“(bd:q)u(cd;q)m(q;q)°°

when |a|,|b|,|c|,|d| < 1, where
= 4%
(4.2) h(x,a) = | 1 - 2aan +a‘q L
n=0
In general there will be finitely many mass points outside (-1,1). See [12] for details.
For the continuous g-ultraspherical polynomials when |8| < 1, the specializa-

tions of the last section lead to

2- . .
a-p B (Bia) (Bgiq)

3
(4.3) f Cn(x;BIq)Cm(x;qu)wa(x)(1-xz)_l/zdx = 2%

-1 m,n

a-ed" V0 8% (@a,
where

© 2 K 2k
(4.4) wglo) « TT =2 - Ld +q )
k=0 (1 - 2(2x% - 1)g"8 + q2¥g?)

This can also be written as

(ezle;q)m(e-ZIB;
B _t6e g

@

Q.

(4.5) wB(cos 0) =

o«
To get a better idea of this weight function observe that

v -xAH 20 a9l -ada - V2

q

When g = 1 this becomes 42(1 - x)2)271/2,
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Before considering other special cases we will give a direct proof of the
orthogonality relation (4.3). There are two reasons for this. One is that no other
proof has appeared yet, and the three other proofs that we know use results that are
not needed in the present proof. Also this proof will give a direct proof of an
important identity of Rogers [36].

As a first step we compute a trigonometric moment that is of independent interest,

T i n § L 2if n -2i6 n
/ eZ‘kews(cos gyae = [ o2k6 TT -4 ;ie qn) — e_zieq:‘ a8 .
0 0 n=0 (1 - e ga )1 = e Bq )
Use the g-binomial theorem,
2i0 =1
W, o, gny2ind
(862167q)m s (Q;q)n
to get
-1 o
T ] o (B ";q) o (B ) Ul : o
f ezlkews(cos 9)de = z o n Bn z o m Bmf e21.(k-¢>n m)ede
0 n=0 ¥V, m=0 FPp 0
=] o
it E (R .q)n(B SVl kion
An0 (q:q)n(q:q)k+n
L B En e g
R e, 71 il
b &4

Heine (28], (29, p. 106], see also [5, Cor. 2.2], gave an important transformation of

the general (4

o
&, b (ax;q) (biq) E, x
(4.6) 2Wl 2 P q.x| = —T;FETZFE?ET: 2¢1 = i d.b| .
The iterate of this is
a, b oo Eia, b
(4.7) 2"1 3 P gq,Xx| = -m zvl - : q,; .

Use (4.7) on the 2w1 above to get

-14-
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o we e we, @@, [ e
[ e (cos 8)a8 = v ; q,8q
0 B @a, 85 e Y s
q'qk 'q“q 7qw
Summing this 2”1 (there are only two nonzero terms) gives
k =1 k
T aike 8 (B ;q)k(l +q)  (Bia) (Baiq)
(4.8) file ws(cos 6)de = 7 > .
0 it (@a) (8%.q
lBI < 1. The condition |B| < 1 was used to expand wB(cos 6) by the g-binomial

theorem, and the series that was used does not converge when 82 > 1. The case B

is trivial, since wl(cos 6) = 1. In this case

m X
[ e¥¥%% (cos 8)a8 = 0,
! 1

K By A, ene e

W, k=0.

To continue the proof of the orthogonality relation consider
L

g C,(cos 8:B|a)T__, (cos 8)w (cos 0)de

where
Tn(cos 8) = cos né .

This integral is

n (Biq) (Biq) _. m " i(n-2k)8 -i(n-2k)6
Cre e )n f ei(n 2j)9[% ; e ] wB(cos 0)de
j=0 q'q j q'q n-j 0
Biq). (B L :
_ 3 E (B:q) . ( ’q’n-j ! (e2i(n=3-K)8 _ e21(k-j)6]ws(cos 8) a0
2 yut (q:q)j(q;q)n_j 0
a (Biq) (Ba:q)
o Gy ke * Ll
(B%:q)  (q:q)
where
k=3 =1
e (B:@) (Rsq) 5 8" (B Py @e ) |
k j=o0 (t:nq)j(cnq)‘,‘_j (qu)k‘j
| R ey =

= ]




5
Use
1-n -1 :
(ax,q)ii= (a,q)n (q " :q_)j (EJJ
# @@, T W@, (ql—na-l;q)j a
to rewrite this as
(8@ (8" Liq) a @, el e, e, ;
: n k ok k il ) 3 J s [
(4.9) I = o (el B (1+q) }: e 1=k =7 qa .
et k j=0 (q;q)j(q B ;q)j(q B;q)j(—q :q)j

This sum is a balanced 4w3 (i.e. the product of the numerator parameters times q is |

the product of the denominator parameters that are listed in the ,¢_.) and so may be

4 3
transformed by
de af
g, a, b, c be) ™ (bc' q)n be q]n a ", a, %-,%
(4.10) (4 i Q.49 = [——) 2 7 (4 i 9.9
TH e d (e;q) (£iq) 43 o de af
' be’ be

where ql—nabc = def. See [7] or [12) for this transformation. Let 4 = -q-k, a = B. |

This gives

(B:q)n(B-l:q)kBk-n(l + qk)q(l-k)n(qk—n;q)n(ﬁz;q)n
(4.11) I = T 1-k i h
(q;q)n(Bq:q)k(q B :q)n(q B;q)n | 4

e, Boar,
&3l w wem gt e
-9 g ., B

a - " e ha, 6ha @@ o

1!

k
= (Bq) - P
(1 -q B)(Bq:q)k(q;q)n(q B:q)

n-1

2 i
Thus Ik =0, k=1,2,.e,0~1, amd I.~= In = (B ;q)n/(Bq;q)n. Since

0

Tn(x) = 2n-lxn LU | - S To(x) L

and

(B:q)
n n . n
c (x:Bla) = 2 @@, x4+ e, o (5 W i

it is easy to check that (4.3) holds.




The argument above is easy when IBI <1, it would be more complicated for the
values of 8 with |S| > 1 when the polynomials are orthogonal with respect to a
positive measure. Rather than try to carry out this argument (we have not tried)or
introduce the methods that we know will lead to this orthogonality we will now use
the orthogonality to find some important identities. The complete orthogonality rela-
tions will be given in [11] and [12]. Different methods are used in these two papers.

The argument above did not need k = 0,1,...,n. Let k be successively -k

and n + k in (4.11). A calculation gives

m
(4.12) ‘{ C,lcos 8:8]Q)T . (cos 8)wg (cos 0)ab
k -1 n+k+1
N m8 (B .q)k(q.q)n+k a - qn+2k) (B:q)  (Bq iq) O
(g:q), (qiq) | Q- qn+k) (q:q)m(qun;q)n

Using the orthogonality relation (4.3) and (4.12) gives

3
. (4.13) T (x) = ] 8 e
k=0 (q:q)k(ﬁq:q)n_k(l -q )21 - B)

=1 n n-2k
k (B .q)k(q,q)n_k(l -q)( - Bq )

Cn_Zk(x;BIq)
Then if (4.13) is used on the right hand side of (3.11), the result is

l%j (viq), (viq) __, (q:q)
k' n-k ' 7 p-2k
k=0 (@ (@) _, (Bgiq@) .

n-2k

4.19) ¢ (xivla) = 1= Bg" N

-2k 2-k+1 2-k+1 -k ot -k
qn ’ qn/ ' "qn/ ' an + B r 9
~ 6“’5 i 9
n/2-k n/2-k -1 1-k +1-2k n+l-k
q . ¢ =q ¢ v ¥ 9 ’ Bqn |

8q C oy (X8l
Y (1 - B)

The 6¢5 is very well poised and so can be summed by a theorem of Jackson [37, p. 96].

The resulting series is

L?J X (78-1=q)k(7:q) n=k (1 - 8" %
ol Cp(xiBla) = kgo P (@), (Baia) T -8 Ca-axi8l -

This very important formula was found by Rogers [36]. He obtained it by finding

the coefficients for small values of n, guessing the answer, and then proving it by




induction. The special case when Yy =0 and B =1 was used in his second paper [35]

to obtain the identities

2

® n

n=0 ¥y (qiq ) (@ia) :
and

Lol n2+n
i T 25135 :

n=0 '3y (@%:q7) _(q7iq))

While it is not particularly easy to read and understand these papers of Rogers,
we have found it easier to read them after understanding the polynomials of Rogers.
It is also easier to read them in the order [36], [35), [34] rather than the order
in which they were written. These papers are very interesting and contain many other

important results. Probably the most interesting is

min(m,n)
(4.18) Cm(x;BIq)Cn(x;B|q)= kEO a(k,m,n)cm+n_2k(x;8|q)
2 m+n=-2k !
(q;q)m+n_2k(6.q)n_k(B,q)m_k(B.q)k(B i) (1 - B )
a(k,m,n) =

2
B oy (@ (@) (@a), (Bgia) - (1 = B)

Rogers found this result in the same way he found (4.15), by working out the coefficients
for small m, gquessing the answer, and proving it by induction. We do not have a
better proof of (4.18) at this time.

Rogers [36] pointed out that the special case q =1, B = qA is an important
result for spherical harmonics. However no one picked up this result from [36] and
the special case B = qx, q =1 of (4.18) was next stated by Dougall [19] almost
twenty-five years later. The only special cases that were known before Rogers found
g the general result were the trivial cases B = 1, which is equivalent to
3

cos nf cos mb = % [cos(n + m)8 + cos(n - m)B] ,

; B = q, which is




sin(n + 1)0 sinm + 18 _ ™™™ sinm 40+ - 200
sin @ sin @ sin @ #
k=0
1/2

and one nontrivial case, B8 =g e q=1,

: 1) 1) [x :
E min@mn) m+ 0+ 12 [E]k[z]m_k(zln_k‘" gt
¢ P (X)P (x) = )

P (x) »
k=0 m+n+§-k kl(n-k)!(n-k)l[ﬂ i

m+n-k
a result of Ferrers [24, Example 10, p. 156] and Adams [l]. See Chapter 5 of [9] for
a summary of some of the known results on the linearization problem.

Formulas (4.15) and (4.18) can be inverted. The inverse of (4.18) is

(B;q)n(s;q)n (Bsq)mﬂ' min(m,n)

(4.19) —————B ¢  (x;8|q) = b(k,m,n)C__ (x;B8|a)C__ (xiB|q) ,
(q,q)m(qrq)n m+n (q;q)wn s m-k n-k %
@™ %0, 0 - M g, [p2)" :
b(k,m,n) = o gy g . i
(@q), (1 -q B “)(q B tq)k

S

The limiting case B8 = qx, q =1 of (4.19) was found by Al-Salam [3]. A proof
of (4.19) can be given following his proof; use (4.18) to replace Cm-k(x;B]q)Cn_k(x:BIq)

and invert the order of summation. The resulting series is a very well poised 6"5'

which is summed by Jackson's result. Details are left to the reader.

The other inverse is :

1 (4.20) wg(x)C_(x;8lq) = kzo atk,mc, o v|aw ()

2 n+2k

+2k
* /i, @0, 0% il ¥

1q) , (Bq iq) (B:;q) (1 - vq ) 4

@a), a0 6%"% (e

a(k,n) =

This follows from (4.15) by the general argument given by Askey in [8]. The series

(4.20) converges when [B] <1, |q| < 1. For |atk,n)| = O(Bk) and

(v:q)

e (QN)k

(x:;y|@)| ¢ (n + 1) max
k

n+2k = A(Y.q) (n + 1)

for y,q fixed, |q| < 1.
Rogers ([36) found a number of other formulas. The reader is referred to [36] for

these results.

-19-
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5. Special cases. It is not surprising that interesting results are found when q -+ 1.
However it is surprising that an interesting result could be found by letting q =+ 0.

To see this consider the generating function (2.10) when q = 0. It is

2.2 i6 ~if ©
1= 26c cow @ + BTy" () = Bre’ )1 = fre . 5) = n
2 1 T Z Cn(cos 6;8,0)r .

(5.1) 16 =
l ~2rcos 6 +r (1 -re )(L - re ) n=0

A partial fraction decomposition gives

2 sin(n + 1)6

(5.2) ¢, (cos 8;8|0) = 28(1L - B)cos né + (1 - B) e B % YsBunes 1
Co(cos 8;8/0) =1
or
2 =
Cn(x,8|0) 281 = BT (x) + (1 - B)7U_(x), T R
co(x;slm “i .
These can also be written as
% v b i sin(n + 1)8 _ ¥ sin(n - 1)6 -
3 € (cos 8:8j0) = (1 - B} NS - g1 - B} e A= Li2eess
Co(cos 8;8l0) =1
: or

c (xi8[0) = (1 - BIU (x) - 62 - BV _,(x), n=1273....,

Co(x;B|0) =1.

The orthogonality relation is

1 _ L 2.1/72
5.3 [ c xi8loc xiglo —E=E1——ax =2 a-s? . mn * 00
- -+ 82 - asx '
' 1 2.1/2
5 2 _L=x} " L
/ [co(x.BIO)) R T T

21 (a+ 82 - asx
when [B] < 1.
This is a known result. It follows easily from the SzeqS-Botnstein theory [14],

[40, §2.6]); it was also given by Karlin and McGregor (31]. When B8 > 1 there are

two point masses that need to be added outside [-1,1]. See Karlin and McGregor (31].




Some of these functions are spherical functions on rank one spaces over reductive

L *T‘*F?“W‘WM

p-adic groups. See Cartier [18].
The case q + 1 gives the classical ultraspherical polynomials. The main point

of interest here is the way the weight functions converge as q + 1. Recall that

l = ) 2 n 2n (B:q)m(Bq;q)m
f T—T (1 2(2x Xya + g ) dx P £

(5.4) -
Sln=0 (1 - 2(2x° - 1gg” + 8% A - x° @ (8%

Let B = qA and x = ele. Then (5.4) becomes

: A A+l
2 ® = ; :
s In ® B 16QP) i e 216qn) ke (q (g Q)
% l 2i0 n+) I l =216 n+) A =
0 n=0 (1 -e q@ ") n=0 (1 - e g ) (q ;q)a(q;q)u

The g~gamma function Fq(x) is defined by

(@:q) Tt
(5.6) Tq(x) e (8 ' 0 < g <l
(a:q)

In [10] it was shown that lim_rq(x) = I'(x). The limit on the right hand side of

q*l
(5.5) can be written as

2nFq(2A) L 212\ & e
TOT O+ "TOHTA + D q :

(5.7)

The left hand side of (5.5) is

m
-2 A _2i8
/ 1¥ola: avqge

=51 A -
) ¥olaia.ae %4940 ,
)

and formally this converges to

\ w . o L L
; ‘ [ - 0 - a3 = [ (2- 2 cos 91200 = 2 [ (sin 0)P a8 .

0 0 o

The formal argument can be justified since

(ax;q)

lvo(er q,x) = 7;?37:_

and

~a
1Fola x) Q- x)

are functions which are analytic for [x| < 1 and have extensions to the complex plane




cut along (-«,-1] and

: a = i
lim foq. mx)~lF&§,x).
gl
A
Another interesting case is q * -1. Consider the case B = -|q| . Set q = -p.
Then
¥ 2 A X 2
2
(e216;q)w (e218;q2)m(qe 16:qz)w
L S L B By NI o X 216 2 X 216 2
i CURE! -lal"e™ e, -lal’e™ "1 (-alal "e"iq")
E 5 2
236 2 2ig
(e*ip ), (-pe :pz)°°
= Eam ot 2 X 2i8 2
(p e HER) (SpRe R rpE)l
2
b -(A+1) 2 A+l 2i8 _-(-1) 2 _ A 2i8
= Ilwo(p_ =S A T B N s e T [
As p »+ 1 this converges to
=HAENE e 1-2/2 53] 2i0, (A+1)/2 218, (A\-1) /2]
F i e F ; —e =|(1-e ) (l+e )
10 10
= (2= 2 con 200 U200 L o con auy M2 :
= Z)H'l(sinze)()‘“")/22)‘-.1(cosze)()‘_l)/2
- 370wy PRI
Set
A ! A
(5.8) N (cos 6) = 1lim C_(cos 6; —|q| lq) v
n n
q>-1
Then
i A 2.1/2 A~1
(5.9) f N ()N (x) (1 - x°) |x|" "ax =0, m#*n.
Lom n
A change of variables gives
A A
A (5,5-1) 5
(5.10) N2m(x) = aum (2x = 1),
A A
X (2'2) 2

(5.11) (x) = bmem (2" = 1) »

N2m+1
(a,B)
n

where the Jacobi polynomial P (x) is defined by

«23=




(@ +1) e B AR S E LR SR

P ;: — .
! 2 2
n 1 B 2

(5.12) plo:8)
n

(x) =

They are orthogonal on (-1,1) with respect to (1 - %+ x)a. The constants

a and bu in (5.10) and (5.11) can be determined by keeping track of the constants
that occur in the various orthogonality relations, they can be determined from the
recurrence relations or the coefficient of x" in one of the explicit formulas for
cn(x;BIq) can be computed under the specialization B8 = -IqlA and q + -1, and can
be compared with the coefficient of x" in (5.12). The last is the easiest method.

The results are

A m 2
(5.13) N2m(x) (AJ Pm (2" = 1)
Z'm
and
: a+n &Y
(5.14) N2m+1(X) = 2x (X—'Fl-;_ Pm 2% =2y .

2 'm
Now we can see the real reason for the existence of a surprising result of

Hylleraas [30). The coefficients in the expansion

n+m
(5.15) pOB plorfl s a0 T stk P )
n m k
k=|n-m|

+
are of interest. The case a = B is the special case B8 = qa e

9+ 1 of (4.18).
The coefficients in (5.15) are not usually given as a single term, which they are when
a = B, They are usually a sum of products, rather than just a product. Hylleraas
found one other case when the coefficients are given by a product, the case @ = B + 1.
This iollows from (4.18) when n and m are even, B = -IQ|A and q + -l.

The case B = Iqlx, q * -1 leads to similar results, but nothing new, so it

will not be considered here.
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6. The continuous g-Hermite polynomials. The last special case that will be mentioned

is the case B = 0. With a different normalization they will be called the continuous
q-Hermite polynomials,

(6.1) Hn(x|q) = (q.q)ncn(x;olq) :

The recurrence rel: tion becomes

n
(6.2) 2 (x|q) =B (xl@ + (- g (x]q) .
The generating function (2.10) becomes

® H_ (cos 8|q "

ik
(6.3) 5 =
[(rele;q)wl2 n=0 (q,q)n
or
n

(6.4) 1 = B &lor

@ s (eg)

T_T = 2xrqn + rzqzn) ae 5

n=0
Rogers [35] and later Szega [39) and Carlitz [15), [16) studied these polynomials
extensively. Carlitz used a different variable and normalization, so his results need
a slight translation to correspond to those of Rogers and special cases of formulas
in this paper. He uses a variable and normalization that make it clear that the func-
tions are polynomials in this variable. However the price he has to pay of losing
the nice orthogonality relation is so high that we will use the notation above.

The g-extension of Mehler's bilateral sum for Hermite polynomials is

s (rzsq)” E H_(cos elq)Hn(cos e|lgxe®
(6.5) - :
i 2 o (q:q)
|(rei(e+¢);q)a(!e1(eqw);q)ml B x

See [40, Problem 23]} for Mehler's formula. A beautiful combinatorial proof of Mehler's

formula has been given by Foata [25]. Formula (6.5) is one of the few results that

=

have been found for g-Hermite polynomials that has not been extended to g-ultraspherical

polynomials.




T gt

The orthogonality relation (4.3) becomes

1 ® 2m(q;q)
2 X2k 2-1/2, n
(6.6) {1 H (x|@H (x]q) k|=o Q-2(x"-Dqg +q")Q-x") ax = i

so (6.5) is the analogue of Mehler's formula. For they both have the form
n
® pn(x)pn(n)r
h

n=0 n

with

b
2
b, £ (p, (x)1*w(x)ax .

The orthogonality relation (6.6) was given by Allaway [2].

The reader should now read the papers of Rogers [34], [35], and [36] to see how
he used the g-Hermite polynomials to obtain the Rogers-Ramanujan identities and many
other results.

There are many open problems. The most important is to find spaces on which
these polynomials live, presumably as spherical functions. Then groups acting on
these spaces need to be used to derive addition formulas. It would be interesting to
find a combinatorial interpretation of the g-Hermite polynomials, and then use it to
give a combinatorial proof of (6.5). Slepian [38] has a very important multisum
extension of Mehler's formula and Foata and Garsia [26] have found a combinatorial
proof of this formula. A similar formula for the continuous g-Hermite polynomials

should be obtained.
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